LINEAR REGRESSION



Credits

Some of these slides were sourced and/or modified
from:

Christopher Bishop, Microsoft UK
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Relevant Problems from Murphy

17.4,7.6,7.7,7.9

1 Please do 7.9 at least. We will discuss the solution
in class.
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Linear Regression Topics

What is linear regression?
Example: polynomial curve fitting
Other basis families

Solving linear regression problems
Regularized regression

Multiple linear regression

Bayesian linear regression
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What is Linear Regression?

In classification, we seek to identify the categorical class C,
associate with a given input vector x.

In regression, we seek to identify (or estimate) a continuous
variable y associated with a given input vector x.

y is called the dependent variable.

x is called the independent variable.

If y is a vector, we call this multiple regression.
We will focus on the case where y is a scalar.

Notation:
y will denote the continuous model of the dependent variable

t will denote discrete noisy observations of the dependent
variable (sometimes called the target variable).
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Where is the Linear in Linear Regression?

In regression we assume that y is a function of x.
The exact nature of this function is governed by an
unknown parameter vector w:

y = y(x w)
The regression is linear if y is linear in w. In other
words, we can express y as

y = w'o(x)
where
qb(x) is some (potentially nonlinear) function of x.
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Linear Basis Function Models

Generally
M—1

w; (X w' (%)

7=0
where @{(X) are known as basis functions.
Typically, @,(X) = 1, so that W, acts as a bias.

In the simplest case, we use linear basis functions :

Py(X) =
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Example: Polynomial Bases

-1 Polynomial basis
functions:

¢J(£L') — SCj.

1 These are global

a small change in x
affects all basis functions.

A small change in a |
basis function affects y -1 0 1
for all x.
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Example: Polynomial Curve Fitting
o

0 1

M
y(x,w) = wo + wix + wox? + ... +wyrM = ijxj
=0
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Sum-of-Squares Error Function
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1" Order Polynomial
T
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34 Order Polynomial
e
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9t Order Polynomial
e

XQR,IS ' CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition J. Elder
UNTVERSITY



Regularization
] rechinoenierenee

o1 Penalize large coefficient values

N A
Z Y(Tp, W) —tn} + §IIWII2

l\DIn—k

NIV
N1V
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Regularization
o

9th Order Polynomial
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Regularization

9th Order Polynomial
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Regularization

9th Order Polynomial

1
Training
Test
>
= 0.5 d
)
0 _/ L L L
—-35 =30 4, —25 -20
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Probabilistic View of Curve Fitting

1 Why least squares?

1 Model noise (deviation of data from model) as

Gaussian i.i.d.
A

t

y(z,w) ,

2

y(m07 W) .
p(t|a:0, ,B) =N (tly(zo, w), ")

where f§ = LZ is the precision of the noise.
o

>
o T
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Maximum Likelihood

p(tjx, w,3) = toly(zn, W), 57")

||::]2

1 We determine w,,, by minimizing the squared error E(w).

N
Inp(t|x,w, ) = Z {y(z,,w tn}2 +? In (3 — gln(%r)

7

BE(W)
0 Thus least-squares regression reflects an assumption that the
noise is i.i.d. Gaussian.
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Maximum Likelihood

p(tjx, w,3) = toly(zn, W), 57")

||::]2

1 We determine w,,, by minimizing the squared error E(w).

N
Inp(t|x,w, ) = Z {y(z,,w tn}2 +? In (3 — gln(%r)

7

BE(w)

o Now given w,,,, we can estimate the variance of the noise:

1

1 & )
— = —= > {y(Tn, WML) — tn}
B N nz::l ML
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Predictive Distribution
T2

p(tlz, wa, SuL) = N (tly(x, waw), By, )

| = Generating function
1t _/Observed data
¢ ~ Maximum likelihood prediction
 Posterior over f
0
1t

0 e 1
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MAP: A Step towards Bayes

Prior knowledge about probable values of w can be incorporated into the
regression:

a \ (M+1)/2 «
p(wla) = N(w|0,a ') = (—) exp {——WTW}
27 2
Now the posterior over w is proportional to the product of the likelihood

times the prior:

p(wlx, t, a, 3) o< p(t|x, w, B)p(w]|a)

The result is to introduce a new quadratic term in w into the error function
to be minimized-

BE(w 5 Z{y Ty W) —tn }2 + —W W

Thus regulquzed (ridge) regression reflects a O-mean isotropic Gaussian
prior on the weights.

YQRK ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder

I'VER



Linear Regression Topics

What is linear regression?
Example: polynomial curve fitting
Other basis families

Solving linear regression problems
Regularized regression

Multiple linear regression

Bayesian linear regression

' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder

IVERSITE
NIVERSITY

YORK




Gaussian Bases

Gaussian basis functions: Think of these as interpolation functions.
2
(z—py)” | 1
Oi(xr) =expq — ,
0.75|
These are local:
a small change in x affects 0.5
only nearby basis functions.
. . 0.25}/
a small change in a basis
function affects y only for
nearby x. 0 1 1

U and s control location
and scale (width).
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Maximum Likelihood and Linear Least Squares

1 Assume observations from a deterministic function with
added Gaussian noise:

t=y(x,w)+e where ple|B) =N(el0,57")

01 which is the same as saying,

p(thx,w,B) = N (tly(x,w), 7).

- where
M—-1
T
w;j¢;(x) = W P(x)
7=0
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Maximum Likelihood and Linear Least Squares

11 Given observed inputs, X = {xi,...,xy} , and
targets, t = [t1,...,tx]T we obtain the likelihood
function

n|W (%), 1).

::]2

p(t|X,w,3) =

n=1

XQRK ' CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

J. Elder



Maximum Likelihood and Linear Least Squares

11 Taking the logarithm, we get

N
nptlw,) = 3 AN (talw d(x,), 67
n=1

= T Inf - ln(2m) — GEp(w)

1 where

Ep(w) = % Y Atn —whd(xn)}?

1 is the sum-of-squares error.
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Maximum Likelihood and Least Squares

1 Computing the gradient and setting it to zero yields
N
Vw Inp(tlw,5) = 0 Z {tn — WT¢(Xn)} ¢(Xn)T = 0.
n=1

1 Solving for w, we get

X The Moore-Penrose
\

' —1 pseudo-inverse, P,
WML, = ((I)T(I)> ol

-1 where
( Po(x1)  ¢1(x1) -+ dm-1(x1) \
5 ¢o(x2)  d1(x2) -+ Pm-1(x2)
\ do(xn) dr(xn) o dua(xn) )
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Regularized Least Squares

1 Consider the error function:

A is called the

Ep (W) + AEw (W) regularization
coefficient.

Data term + Regularization term

1 With the sum-of-squares error function and a
quadratic regularizer, we get

AT

N
% nz::l{tn —who(x,)} + W W

o1 which is minimized by
w = ()\I + @ch) T et

\

Thus the name ‘ridge regression’
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Application: Colour Restoration
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Application: Colour Restoration

Nl

’ Original Imag Red and Blue Channels Only Predicted Image

\
-----------
------------

E— e

Remove Restore
Green Green
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Regularized Least Squares

-1 A more general regularizer:

— W (xn) 1+ Z\wﬂq

1
2

/
N

e
IZANPAR

(Least absolute shrinkage and selection operator)
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Regularized Least Squares

71 Lasso generates sparse solutions.

W2, w2 a
Iso-contours
of data term E,(w)
*
W* W
Iso-contour of
regularization term E,, (w)
> >
KJ N \/ "
Quadratic Lasso
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Solving Regularized Systems

Quadratic regularization has the advantage that
the solution is closed form.

Non-quadratic regularizers generally do not have
closed form solutions

Lasso can be framed as minimizing a quadratic
error with linear constraints, and thus represents a
convex optimization problem that can be solved by
quadratic programming or other convex
optimization methods.

We will discuss quadratic programming when we
cover SVMs
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Multiple Outputs

Analogous to the single output case we have:
p(tlx, W,5) = N(tly(W,x),57'T)
= N{tW'e(x),67'1).
Given observed inputs X = {x;,...,xy} , and
targets T = [ty,...,tn]"
we obtain the log likelihood function

N
np(TIX,W,5) = > InN(to|W (), 57'T)

n=1
NK_ (B8\ B
= g <%> B 5; [0 — W)
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Multiple Outputs

Maximizing with respect to W, we obtain

—1
W = (<I>T<I>) 7T,

If we consider a single target variable, t,, we see that

1
- (<I>T<I>) dTt, — d't,

where t, = [ti,...,tni]" , Which is identical with the
single output case.
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Some Useful MATLAB Functions

0 polyfit
Least-squares fit of a polynomial of specified order to
given data

1 regress

More general function that computes linear weights for
least-squares fit
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Rev. Thomas Bayes, 1702 - 1761



Bayesian Linear Regression

In least-squares, we determine the weights w that
minimize the least squared error between the model
and the training data.

This can result in overlearning!

Overlearning can be reduced by adding a
regularizing term to the error function being
minimized.

Under specific conditions this is equivalent to a
Bayesian approach, where we specify a prior
distribution over the weight vector.
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Bayesian Linear Regression

Define a conjugate prior over w:

p(w) = N(w|my, So).
Combining this with the likelihood function and
matching terms, we obtain

p(wlt) = N(w|mpy,Sy)

where

my = Sy (Salmo—I—,B(I)Tt)
Sy, = Sy;'+pele.
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Bayesian Linear Regression

A common choice for the prior is

p(w) = N(w|0,a"'T)
for which

my = [Sy®'t

Sy ol + 32" ®.

Thus m represents the ridge regression solution with
A=a/p

Next we consider an example ...
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Bayesian Linear Regression

Example: fitting a straight line

O data points observed

Prior Data Space
1 1
w1 g Yy
0f 0
-1 -1
-1 -1 0 o 1
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Bayesian Linear Regression

1 data point observed

Likelihood for (x,,t;) Posterior Data Space
1 1
w1 Y
0 0
-1 -1
-1 -1 0 1

CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder




Bayesian Linear Regression

2 data points observed

Likelihood for (x,,t,) Posterior Data Space

1

w1
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Bayesian Linear Regression

20 data points observed

Likelihood for (x,q,t0) Posterior Data Space
1

w1
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Bayesian Prediction

In least-squares, or regularized least-squares, we
determine specific weights w that allow us to predict
a specific value y(x,w) for every observed input x.

However, our estimate of the weight vector w will
never be perfect! This will introduce error into our
prediction.

In Bayesian prediction, we model the posterior
distribution over our predictions, taking into account
our uncertainty in model parameters.
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Predictive Distribution

- Predict f for new values of x by integrating over w:

p(tlt, o, B) = / p(tlw, B)p(wlt, @, §) dw
— N(tmEé(x), 0% (x))

1 where

o (x) = = + (%) Snp(x).
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Predictive Distribution

1 Example: Sinusoidal data, 9 Gaussian basis functions,
1 data point

Notice how much bigger our uncertainty is

relative to the ML method!! Samples of y(x,w)
p(tIta.p)

1 11y

t t
Elt|top]

ol o | ol

1t 1
; —
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Predictive Distribution

1 Example: Sinusoidal data, 9 Gaussian basis functions,
2 data points

E[tIto.p] p(t | t,a,ﬁ) Samples of y(x,w)
/ / i :
1t |
' /
0 ol
-1t -1
; —
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Predictive Distribution

1 Example: Sinusoidal data, 9 Gaussian basis functions,
4 data points

E[tIto.p] p(t | t,a,ﬁ) Samples of y(x,w)
/ / i :
1t |
' /
0 ol
-1t -1
; —
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Predictive Distribution

1 Example: Sinusoidal data, 9 Gaussian basis functions,

25 data points

Samples of y(x,w)
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